Evaluation of finite part integrals using a regularization technique that decreases instability
نویسندگان
چکیده
A hypersingular integral can be regularized by replacing the whole integrand by a forward difference quotient of 2nd order. If the density function is nearly singular, then Gauss quadrature formulas associated with a suitable modification of the Chebyshev weight function allow to obtain great precision with few nodes. However, in most cases, the own nature of this procedure makes unpredictable the location of quadrature nodes. This paper presents a simple but effective technique whose aim is to mitigate instability when some node lies too close to the pole. Some numerical examples are shown to evaluate the performance of the proposed method.
منابع مشابه
ǫ-Finite Basis of Master Integrals for the Integration-By-Parts Method
It is shown that for every problem within dimensional regularization, using the Integration-By-Parts method, one is able to construct a set of master integrals such that each corresponding coefficient function is finite in the limit of dimension equal to four. We argue that the use of such a basis simplifies and stabilizes the numerical evaluation of the master integrals. As an example we expli...
متن کاملThe Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order
Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...
متن کاملCollier: A fortran-based complex one-loop library in extended regularizations
We present the library Collier for the numerical evaluation of one-loop scalar and tensor integrals in perturbative relativistic quantum field theories. The code provides numerical results for arbitrary tensor and scalar integrals for scattering processes in general quantum field theories. For tensor integrals either the coefficients in a covariant decomposition or the tensor components themsel...
متن کاملThe Three-point Function in Split Dimensional Regularization in the Coulomb Gauge
We use a gauge-invariant regularization procedure, called split dimensional regularization, to evaluate the quark self-energy Σ(p) and quark-quark-gluon vertex function Λμ(p , p) in the Coulomb gauge, ~ ▽ · ~ A = 0. The technique of split dimensional regularization was designed to regulate Coulomb-gauge Feynman integrals in non-Abelian theories. The technique which is based on two complex regul...
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Applied Mathematics
دوره 319 شماره
صفحات -
تاریخ انتشار 2017